Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
ACS ES T Water ; 2(11): 2243-2254, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2115772

ABSTRACT

The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.

2.
ACS ES&T water ; 2022.
Article in English | EuropePMC | ID: covidwho-2046390

ABSTRACT

The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing–seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations. Fluctuation of SARS-CoV-2 RNA levels in wastewater reflects temporal trends of new COVID-19 cases in the community correspondingly.

3.
Sci Total Environ ; 856(Pt 1): 158964, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2042124

ABSTRACT

Wastewater-based surveillance (WBS) data normalization is an analyte measurement correction that addresses variations resulting from dilution of fecal discharge by non-sanitary sewage, stormwater or groundwater infiltration. No consensus exists on what WBS normalization parameters result in the strongest correlations and lead time between SARS-CoV-2 WBS data and COVID-19 cases. This study compared flow, population size and biomarker normalization impacts on the correlations and lead times for ten communities in twelve sewersheds in Alberta (Canada) between September 2020 and October 2021 (n = 1024) to determine if normalization by Pepper Mild Mottle Virus (PMMoV) provides any advantages compared to other normalization parameters (e.g., flow, reported and dynamic population sizes, BOD, TSS, NH3, TP). PMMoV concentrations (GC/mL) corresponded with plant influent flows and were highest in the urban centres. SARS-CoV-2 target genes E, N1 and N2 were all negatively associated with wastewater influent pH, while PMMoV was positively associated with temperature. Pooled data analysis showed that normalization increased ρ-values by almost 0.1 and was highest for ammonia, TKN and TP followed by PMMoV. Normalization by other parameters weakened associations. None of the differences were statistically significant. Site-specific correlations showed that normalization of SARS-CoV-2 data by PMMoV only improved correlations significantly in two of the twelve systems; neither were large sewersheds or combined sewer systems. In five systems, normalization by traditional wastewater strength parameters and dynamic population estimates improved correlations. Lead time ranged between 1 and 4 days in both pooled and site-specific comparisons. We recommend that WBS researchers and health departments: a) Investigate WWTP influent properties (e.g., pH) in the WBS planning phase and use at least two parallel approaches for normalization only if shown to provide value; b) Explore normalization by wastewater strength parameters and dynamic population size estimates further; and c) Evaluate purchasing an influent flow meter in small communities to support long-term WBS efforts and WWTP management.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2 , Alberta , Lead , Wastewater-Based Epidemiological Monitoring
4.
J Environ Sci (China) ; 125: 843-850, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-1819537

ABSTRACT

With a unique and large size of testing results of 1,842 samples collected from 12 wastewater treatment plants (WWTP) for 14 months through from low to high prevalence of COVID-19, the sensitivity of RT-qPCR detection of SARS-CoV-2 RNA in wastewater that correspond to the communities was computed by using Probit analysis. This study determined the number of new COVID-19 cases per 100,000 population required to detect SARS-CoV-2 RNA in wastewater at defined probabilities and provided an evidence-based framework of wastewater-based epidemiology surveillance (WBE). Input data were positive and negative test results of SARS-CoV-2 RNA in wastewater samples and the corresponding new COVID-19 case rates per 100,000 population served by each WWTP. The analyses determined that RT-qPCR-based SARS-CoV-2 RNA detection threshold at 50%, 80% and 99% probability required a median of 8 (range: 4-19), 18 (9-43), and 38 (17-97) of new COVID-19 cases /100,000, respectively. Namely, the positive detection rate at 50%, 80% and 99% probability were 0.01%, 0.02%, and 0.04% averagely for new cases in the population. This study improves understanding of the performance of WBE SARS-CoV-2 RNA detection using the large datasets and prolonged study period. Estimated COVID-19 burden at a community level that would result in a positive detection of SARS-CoV-2 in wastewater is critical to support WBE application as a supplementary warning/monitoring system for COVID-19 prevention and control.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater/analysis , RNA, Viral/genetics , RNA, Viral/analysis , Alberta/epidemiology
5.
Sci Total Environ ; 812: 151434, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1500243

ABSTRACT

Wastewater surveillance of SARS-CoV-2 has become a promising tool to estimate population-level changes in community infections and the prevalence of COVID-19 disease. Although many studies have reported the detection and quantification of SARS-CoV-2 in wastewater, remarkable variation remains in the methodology. In this study, we validated a molecular testing method by concentrating viruses from wastewater using ultrafiltration and detecting SARS-CoV-2 using one-step RT-qPCR assay. The following parameters were optimized including sample storage condition, wastewater pH, RNA extraction and RT-qPCR assay by quantification of SARS-CoV-2 or spiked human coronavirus strain 229E (hCoV-229E). Wastewater samples stored at 4 °C after collection showed significantly enhanced detection of SARS-CoV-2 with approximately 2-3 PCR-cycle threshold (Ct) values less when compared to samples stored at -20 °C. Pre-adjustment of the wastewater pH to 9.6 to aid virus desorption followed by pH readjustment to neutral after solid removal significantly increased the recovery of spiked hCoV-229E. Of the five commercially available RNA isolation kits evaluated, the MagMAX-96 viral RNA isolation kit showed the best recovery of hCoV-229E (50.1 ± 20.1%). Compared with two-step RT-qPCR, one-step RT-qPCR improved sensitivity for SARS-CoV-2 detection. Salmon DNA was included for monitoring PCR inhibition and pepper mild mottle virus (PMMoV), a fecal indicator indigenous to wastewater, was used to normalize SARS-CoV-2 levels in wastewater. Our method for molecular detection of SARS-CoV-2 in wastewater provides a useful tool for public health surveillance of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Water ; 13(16):2166, 2021.
Article in English | MDPI | ID: covidwho-1348709

ABSTRACT

Mounting evidence suggests that solids are a reliable matrix for SARS-CoV-2 detection in wastewater, yet studies comparing solids-based methods and common concentration methods using the liquid fraction remain limited. In this study, we developed and optimized a method for SARS-CoV-2 detection in wastewater using moderate-speed centrifuged solids and evaluated it against an ultrafiltration reference method. SARS-CoV-2 was quantified in samples from 12 wastewater treatment plants from Alberta, Canada, using RT-qPCR targeting the N2 and E genes. PCR inhibition was examined by spiking salmon DNA. The effects of using different amounts of solids, adjusting the sample pH to 9.6–10, and modifying the elution volume at the final step of RNA extraction were evaluated. SARS-CoV-2 detection rate in solids from 20 mL of wastewater showed no statistically significant difference compared to the ultrafiltration method (97/139 versus 90/139, p = 0.26, McNemar’s mid-p test). The optimized wastewater solids-based method had a significantly lower rate of samples with PCR inhibition versus ultrafiltration (3% versus 9.5%, p = 0.014, Chi-square test). Our optimized moderate-speed centrifuged solids-based method had similar sensitivity when compared to the ultrafiltration reference method but had the added advantages of lower costs, fewer processing steps, and a shorter turnaround time.

8.
Sci Total Environ ; 774: 145732, 2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1071919

ABSTRACT

Current wastewater worker guidance from the United States Environmental Protection Agency (USEPA) aligns with the Centers for Disease Control and Prevention (CDC) and the Occupational Safety and Health Administration (OSHA) recommendations and states that no additional specific protections against SARS-CoV-2, the virus that causes COVID-19 infections, are recommended for employees involved in wastewater management operations with residuals, sludge, and biosolids at water resource recovery facilities. The USEPA guidance references a document from 2002 that summarizes practices required for protection of workers handling class B biosolids to minimize exposure to pathogens including viruses. While there is no documented evidence that residuals or biosolids of any treatment level contain infectious SARS-CoV-2 or are a source of transmission of this current pandemic strain of coronavirus, this review summarizes and examines whether the provided federal guidance is sufficient to protect workers in view of currently available data on SARS-CoV-2 persistence and transmission. No currently available epidemiological data establishes a direct link between wastewater sludge or biosolids and risk of infection from the SARS-CoV-2. Despite shedding of the RNA of the virus in feces, there is no evidence supporting the presence or transmission of infectious SARS-CoV-2 through the wastewater system or in biosolids. In addition, this review presents previous epidemiologic data related to other non-enveloped viruses. Overall, the risk for exposure to SARS-CoV-2, or any pathogen, decreases with increasing treatment measures. As a result, the highest risk of exposure is related to spreading and handling untreated feces or stool, followed by untreated municipal sludge, the class B biosolids, while lowest risk is associated with spreading or handling Class A biosolids. This review reinforces federal recommendations and the importance of vigilance in applying occupational risk mitigation measures to protect public and occupational health.


Subject(s)
COVID-19 , Occupational Health , Biosolids , Humans , Pandemics , SARS-CoV-2 , United States
9.
Water Sci Technol ; 82(12): 2798-2812, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-992978

ABSTRACT

As the numbers of COVID-19 cases grew globally, the severe shortages of health care respiratory protective equipment impacted the ability of water resource recovery facilities (WRRFs) to acquire N95 masks for worker protection. While the Occupational Safety and Health Administration (OSHA) encourages WRRFs to conduct job safety assessments to mitigate risks from bioaerosols, it does not provide clear guidance on respiratory protection requirements, leaving the use of N95 masks across the industry non-standardized and difficult to justify. Strategies need to be developed to cope with shortages during pandemics, and these should take into consideration a WRRF's size and disinfection equipment available. Our objective is to provide an overview of respiratory protection-related practices recommended for health care professionals that apply to WRRFs (e.g., elimination, substitution, extended use, reuse, disinfection). Reviewed N95 mask disinfection strategies included using hydrogen peroxide, autoclaving, moist heat, dry heat, ultraviolet germicidal irradiation (UVGI), ethylene oxide, chlorine and ethanol. Of these, dry heat, autoclaving and UVGI present the most promise for WRRFs, with UVGI being limited to larger utilities. We recommend that WRRFs work closely with disinfection technology manufacturers, mask providers, health and safety staff and inspectors to develop suitable programs to cope with N95 mask shortages during pandemics.


Subject(s)
COVID-19 , Pandemics , Equipment Reuse , Humans , N95 Respirators , SARS-CoV-2 , Water Resources
10.
Water Environ Res ; 93(4): 502-515, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-734815

ABSTRACT

While researchers have acknowledged the potential role of environmental scientists, engineers, and industrial hygienists during this pandemic, the role of the water utility professional is often overlooked. The wastewater sector is critical to public health protection and employs collection and treatment system workers who perform tasks with high potential for exposures to biological agents. While various technical guidances and reports have initially provided direction to the water sector, the rapidly growing body of research publications necessitates the constant review of these papers and data synthesis. This paper presents the latest findings and highlights their implications from a water and wastewater utility operation and management perspective. PRACTITIONER POINTS: Extrapolation from SARS-CoV-1 and MERS-CoV, as well as other surrogates, has helped predicting SARS-CoV-2 behavior and risk management. Data from treated wastewater effluent suggest that current processes are sufficient for SARS-CoV-2 control. Scientific evidence supports the possibility of fecal-oral transmission for SARS-CoV-2. Limited evidence supports the potential survival of infective SARS-CoV-2 on surfaces and in aerosols and the efficacy of control measures at reducing transmission. Protective practices and PPE can protect workers from SARS-CoV-2 and other pathogens found in wastewater.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Wastewater , Water
SELECTION OF CITATIONS
SEARCH DETAIL